Tensor Products of Approximately Cohen–Macaulay Rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

bivariations and tensor products

the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...

متن کامل

Tensor Products

Let R be a commutative ring and M and N be R-modules. (We always work with rings having a multiplicative identity and modules are assumed to be unital: 1 ·m = m for all m ∈M .) The direct sum M ⊕N is an addition operation on modules. We introduce here a product operation M ⊗RN , called the tensor product. We will start off by describing what a tensor product of modules is supposed to look like....

متن کامل

Tensor products of Cohen - Macaulay rings Solution to a problem of

In this paper we solve a problem, originally raised by Grothendieck, on the transfer of Cohen-Macaulayness to tensor products of algebras over a field k. As a prelude to this, we investigate the grade for some specific types of ideals that play a primordial role within the ideal structure of such constructions.

متن کامل

Tensor Products of Modules

The notion of a tensor product of topological groups and modules is important in theory of topological groups, algebraic number theory. The tensor product of compact zero-dimensional modules over a pseudocompact algebra was introduced in [B] and for the commutative case in [GD], [L]. The notion of a tensor product of abelian groups was introduced in [H]. The tensor product of modules over commu...

متن کامل

On constant products of elements in skew polynomial rings

Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2006

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927870600637116